EFFECT OF STORAGE ON SOYBEAN SEED VIGOR AND EMERGENCE

RUPE J C1, CARTWRIGHT R E2, ROBINSON J3, COCHRAN K1, HOLLAND R1, GOEKE S1, PALMER A3 & STEGER A1

1University of Arkansas; 2University of Arkansas Cooperative Extension Service; 3Ohio State University

E-mail: jrupe@uark.edu

Planting vigorous seed is very important in establishing a healthy soybean crop, particularly in the Southern United States where soybean planting begins in April and continues into June or July. Seed for these later plantings usually experiences increasing temperatures and humidity in storage which may reduce seed vigor, but often without a reduction in germination. Not only can storage conditions compromise the seed, but high soil temperatures, fluctuating soil moisture levels, and soil crusting may also reduce emergence, especially if seed vigor is low.

In Arkansas, stand failures in June- and July-planted soybeans are not uncommon, but it is not known if these failures were due to a loss in seed vigor, harsh planting conditions, or both. To determine the effect of commercial storage on soybean seed vigor and emergence, two cultivars (UA4910 and Osage) were stored at three locations in a commercial seed warehouse in Dewitt, AR, in 2011. These locations represented a good area in the warehouse to store seed, a bad area and an on-farm area. The seed was stored in commercial, 25kg seed bags on wooden pallets. Each location had four replicate bags of each cultivar, a temperature and relative humidity sensor (WatchDog Data Logger Model 100, Spectrum Technologies Inc. Plainfield IL) was placed in one bag of each cultivar and one on the outside of a bag to measure ambient conditions. A set of bags was also placed under controlled environmental conditions at the Arkansas State Plant Board to serve as a control. Seed was sampled from each bag every two weeks from April into August and standard germination (SG), accelerated aging (AA), and Seed Vigor Imaging System (SVIS) ratings were determined. AA and SVIS are measures of seed vigor. Seed was also planted at the Vegetable Research Station, Kibler, AR, and emergence at two and four weeks was determined.

Under controlled environmental conditions, there was little change in SG, AA, or SVIS throughout the season. There was little change in SG throughout the season at the warehouse or on-farm locations, but AA and SVIS declined significantly. Declines in AA and SVIS began in mid-May at the on-farm location and mid-June at the good and bad warehouse locations. By mid-August, AA values measured 15-20% at the on-farm site, 42-45% for the good site, 55-58% for the bad site and 65-70% for the control while SG ranged from 70-85%. Temperature and relative humidity remained constant under the controlled environmental conditions (20°C and 60% RH). At the warehouse locations, temperature ranged from 20-35°C and 60-63% RH at the good location, 20-37°C and 40-61% RH at the bad location and 15-33°C and 60-75% RH at the on-farm location. Field emergence was high for all locations through mid-June and then fell to less than 5% when air temperatures reached over 38°C. Once air temperatures fell below 35°C in mid-August and early September, stands increased and differences in stand reflected both AA and SVIS ratings. Poor stands in late-planted soybeans in Arkansas appear to be due to both a loss in seed vigor during storage and very hot weather conditions at planting.
Effect of Storage on Soybean Seed Vigor and Emergence

John C. Rupe1, R.E. Cartwright2, J. Robinson3, K. Cochran1, R. Holland1, S. Goeke1, A. Palme4, A. Steger1, E. Gbur Jr.1

1University of Arkansas, 2University of Arkansas Cooperative Extension Service, 3The Ohio State University, 4Arkansas State Plant Board
Importance of Seed Vigor

- Soybean seed vigor
 - Affects emergence
 - Can decline rapidly in storage
 - Standard germination poor indicator of vigor

- Arkansas
 - Planting begins in April ends in July
 - Late plantings more emergence problems
 - Seed for late planting can experience high temperatures during storage

- Objective: What effect does initial seed vigor and storage conditions have on seed vigor at planting?
Materials and Methods

• Storage
 – 2009 to 2011
 – Three commercial warehouses: Cache, Fisher, Dewitt
 – Three sites/warehouse: Good, Bad, Farm
 – Control: Arkansas State Plant Board (2010, 2011)
 – Two seed lots: high quality and low quality
 – Stored in paper seed bags on pallets
 – Present data from Hornbeck Seed, Dewitt, AR

• Experimental design: 4 replications, one bag/replication
Materials and Methods

• Sampling
 – Every two weeks
 – Sent to Arkansas State Plant Board: Aaron Palmer
 • Standard Germination
 • Accelerated Aging (AA)
 – Temperature and relative humidity
 • WatchDog Data Logger Model 100, Spectrum Technologies Inc. Plainfield IL
 • In the bag
 • Outside of bag
Hornbeck Seed, DeWitt, AR
Storage Location
Standard Germination

Cover and place in growth chamber for 7 days

- 16h light @ 30 °C
- 8h dark @ 20 °C
Accelerated Aging

41°C (106°F)
Near 100% RH
72 hr
Dark
Results: ANOVA

<table>
<thead>
<tr>
<th>Year</th>
<th>Standard Germination</th>
<th>Accelerated Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Cultivar X Environment X Time</td>
<td>Cultivar X Environment X Time</td>
</tr>
<tr>
<td>2010</td>
<td>Cultivar X Time</td>
<td>Cultivar X Environment X Time</td>
</tr>
<tr>
<td>2011</td>
<td>Cultivar X Environment X Time</td>
<td>Environment X Time</td>
</tr>
</tbody>
</table>
DK 4995: 2009

Dates

Percent

Good Germ
Bad Germ
Farm Germ
Good AA
Bad AA
Farm AA
Armor 47G7: 2010

Date

Osage and UA4910:AA 2011

Date

Percent

14-Apr 28-Apr 12-May 26-May 9-Jun 23-Jun 7-Jul 21-Jul 4-Aug

Good
Bad
Farm
Control
Dates of 65 and 30% AA: 2009

- Armor 38G2
 - Good
 - Bad
- Armor 38G2 Farm
- DK 4995
 - Good
 - Bad
- DK 4995 Farm
Dates of 65 and 30% AA: 2010

- Armor 47G7 Farm
 - 30% AA
 - 65% AA
- Armor 47G7 Bad
- Armor 47G7 Good
- DK 4968 Farm
- DK 4968 Bad
- DK 4968 Good

Dates of 65 and 30% AA: 2011

- **Farm**: 30% AA
- **Bad**: 65% AA
- **Good**: 65% AA

Dates:
- 31-Mar
- 20-Apr
- 10-May
- 30-May
- 19-Jun
- 9-Jul
- 29-Jul
- 18-Aug
Seed Quality and Emergence

- 2010 and 2011
- Vegetable Research Station, Kibler, AR
- Seed from Hornbeck and Plant Board
- 200 seed/rep, 5 replications
- Stands counted at 2 wk
- Plots irrigated
Emergence by Storage: 2010

Date

Percent

26-Apr
10-May
24-May
7-Jun
21-Jun
5-Jul
19-Jul
2-Aug
16-Aug

Good
Bad
Farm
Control
Conclusions

• Seed vigor during season depends on
 – Initial vigor
 – Relative humidity more important than temperature

• Emergence
 – Soil temperature
 – Seed vigor

• Both seed vigor and soil temperatures could affect emergence of late planted soybean