The use of efficient heat transfer equipment is an essential requirement for the maximized recovery of low grade energy that is available in a crushing plant. The plate exchanger technology for use in bulk solids lends itself to this purpose by allowing for a larger heat transfer area without requiring a larger footprint or space. The paper explores the science behind accurate thermal modeling that is required to achieve an accurate temperature profile for the beans and/or seeds passing through a bank of heat exchanger plates. A heat transfer model in a slow moving bed of bulk solids requires a three dimensional Fourier series calculation based on thermal conductivity. It differs vastly from conventional use of U values to evaluate heat exchanger performance. The paper discusses options to quantify the overall energy savings in operating a soybean crushing plant by utilizing new sources of low grade waste heat or even improving the efficiency of waste heat recovering systems in place. The paper will also cover a comparison with traditional equipment used as pre-heaters and conditioners in an oilseed crush plant.
UTILISATION OF PLATE TECHNOLOGY IN OILSEEDS PREPARATION PLANTS FOR MAXIMIZED ENERGY RECOVERY

Farah Sköld PEng.

Solex Thermal Science Inc.
Calgary, AB, Canada
Topics

1. Soybean Processing – Conventional Technologies for Drying/conditioning

2. Indirect Heat Transfer
 a) Efficiency comparison
 b) Design features
 c) Waste heat recovery options

3. Hot De-hulling & Cold De-hulling – Energy savings

4. Plate Heat Exchanger Advantage Summary

4. Questions
Soybean Processing

Cold Dehulling

- Bean Cleaning
- Drying / Cooling / Tempering
- Cracking
- Dehulling
- Conditioning
- Flaking
- Extraction

Hot Dehulling

- Bean Cleaning
- Conditioning
- Partial Cracking
- Dehulling
- Cracking
- Dehulling
- Flaking
- Extraction

Hulls
Conventional Technologies

- Direct Air Drying
- Fluid Bed Drying
- Rotary Drum Drying
- Others
 - Flash Drying
Conventional Technologies

PRINCIPLE OF OPERATION
• Blow hot air across the product
Conventional Technologies

HOW IT WORKS:
1. Unsaturated air has moisture carrying capacity
2. Hot air has greater moisture carrying capacity
3. Blowing hot air across product serves two purposes:
 a) *Heats the product*
 b) *Removes moisture from product*

Typical efficiency: 30-65%

Simple. Yet highly inefficient.
Conventional Technologies

INHERENT INEFFICIENCIES

1. Typical efficiency: 30-65%
2. Requires processing of very large quantities of air
3. Results in high stack losses
4. Larger fans are required
5. High power consumption
Solution – Indirect Heat

Thermal efficiency >90%

Efficient heat recovery

Dramatically increases the moisture carrying capacity of the air.

Minimizes the required air for moisture removal.

Temperature Profile through Exchanger
Plate Heat Exchangers for Solids

Level Control
Maintains product level above the plate bank
Models available to suit the application

Vertical Plates
Satisfy the required surface area for heat exchange
Can be accessed/removed/replaced individually

Discharge Feeder
Maintain mass flow of the product
Models available to suit the application
Plate Heat Exchangers - Efficiency

- Direct Air Heating
 35-65 % efficiency

- Plate Heat Exchangers
 > 90 % efficiency
Plate Technology Makes the Use of Low Grade Heat Possible

- Increased the heat transfer surface area

PLATES
Heat transfer surface area: **50m²**
per 1m³ of volume.

TUBES
Heat transfer surface area: **24.5m²**
per 1m³ of volume.
Conditioner With Energy Recovery

Preheating section

Drying section

- HOT WATER IN
- STEAM IN
- AIR IN
- CONDESATE
- COOL WATER OUT

RECOVERED ENERGY

PRODUCT OUT
Plate Heat Exchangers - Efficiency

Advantages

1. Product is heated indirectly

2. Air acts only as the carrying medium to remove moisture

(only a small amount of air is required)
Plate Heat Exchangers - Efficiency Advantages

Psychrometric Chart
High Temperature (SI Units)

1. Ambient Air
2. Heated Air
3. Saturation Point of Air with Conventional Dryer
4. Saturation Point of Air with Solex Dryer/Conditioner

Moisture Carrying Capacity
- 0.044 gm/kg
- 0.015 gm/kg
- 0.008 gm/kg

10% Relative Humidity
20%
40%
60%
80%
100%
120%

Dry Bulb Temperature (°C)
Energy Savings

Cold Dehulling

- Bean Cleaning
- Drying / Cooling / Tempering
- Cracking
- Dehulling
- Conditioning
- Flaking
- Extraction

<table>
<thead>
<tr>
<th></th>
<th>Drying & Conditioning</th>
<th>Extraction</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 TPD</td>
<td>15°C, 9%</td>
<td>65°C, 8.5%</td>
<td></td>
</tr>
<tr>
<td>5300 KW-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 % Efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 KW-H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recoverd waste energy

ENERGY SAVING

- 3450 KW-H
- or 11.2 MBtu/Hr

- 535,000 $/yr
- @$6/MBtu
Energy Savings

Hot Dehulling

- Bean Cleaning
- Conditioning
- Partial Cracking
- Dehulling
- Cracking
- Dehulling
- Flaking
- Extraction

<table>
<thead>
<tr>
<th>Drying & Conditioning</th>
<th>Extraction</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 TPD 15C, 11%</td>
<td>65C, 8%</td>
<td></td>
</tr>
</tbody>
</table>

- Conventional Technology
 - 65% Efficiency
- Solex Dryer
 - 90% Efficiency

Recovered waste energy

- 7500 KW-H
- 1500 KW-H

ENERGY SAVING

- 4500 KW-H
- or 13.8 MBtu/Hr
- 655,000 $/yr
- @$6/MBtu
Flexible Operation

- Run each bank individually on different heat source
- Independent control of Temperature and Moisture
Accessibility

Manifold and Flexible Connections
• Flexible stainless steel hoses allow for thermal expansion
• Individual threaded connections allow for plate removal
• All connections are outside the product stream

Plate banks inspection and Maintenance
• Easy access for cleaning and inspection purposes
• Plates can be individually removed
• Additional doors can be fitted
Reduced Installation, Operational and Maintenance Costs

- Absence of moving parts
- Smaller footprint
- Efficient heat transfer
Soybean Conditioner Technology Comparison

<table>
<thead>
<tr>
<th>Feature Comparison</th>
<th>Fluid Bed Technology</th>
<th>Rotary Drum</th>
<th>Plate Heat Exchanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Consumption</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Installed Capital Cost</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Maintenance / Wear</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Modular Construction</td>
<td>Difficult expansion</td>
<td>Difficult expansion</td>
<td>Easy expansion</td>
</tr>
<tr>
<td>Compactness</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Air Required / Emission</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
Questions